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Yang–Mills Fields as Optical Media

R. Aldrovandi1 and A. L. Barbosa1
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A geometrization of the Yang–Mills field, by which an SU(2) gauge theory
becomes equivalent to a 3-space geometry—or optical system—is examined. In
a first step, ambient space remains Euclidean and current problems on flat space
can be looked at from a new point of view. The Wu–Yang ambiguity, for example,
appears related to the multiple possible torsions of distinct metric-preserving
connections. In a second step, the ambient space also becomes curved. In the
generic case, the strictly Riemannian metric sector plays the role of an arbitrary
host space, with the gauge potential represented by a contorsion. For some field
configurations, however, it is possible to obtain a purely metric representation.
In those cases, if the space is symmetric homogeneous, the Christoffel connections
are automatically solutions of the Yang–Mills equations.

1. INTRODUCTION

Our main intuitive guide to interactions is, ultimately, the nonrelativistic
idea of potential. We recall, for example, the phenomenological potentials
used with reasonable success in low-energy hadron spectroscopy: a Coulomb-
like term, plus a linear potential providing for the confining behavior, are
thought to represent the nonrelativistic limit of the time components Aa

0 of
the gauge potential in chromodynamics. The Wilson-loop criterion for con-
finement gives potentials of that kind in the nonrelativistic limit, and is
thereby justified. There are, however, great advantages in the use of the
(temporal, or Weyl) gauge Aa

0 5 0, which is obviously incompatible with
such a view. The merits of this gauge (Feynman, 1977) are particularly
relevant when associated to the Hamiltonian formalism (Jackiw, 1980). The
major qualitative characteristics of gauge fields, such as shielding and confine-
ment, are nowadays believed to be essentially nonperturbative, and the best
approach available to consider global aspects is precisely the Hamiltonian
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formalism. On the other hand, the impossibility of thinking in terms of a
potential inhibits intuition. It would be nice to have some other qualitative
guide in its stead. This paper is intended to call attention to the possibility
of—at least in some cases—using a geometrical optics analogy. A static
sourceless SU(2) gauge field configuration can, in the temporal gauge, be
“geometrized” to become equivalent to a metric plus a torsion on 3-space.
A metric on a 3-space is a simple optical system (Guillemin and Sternberg,
1977), as it can be seen as the dielectric tensor eij of a medium to which
torsion will add some defects (Aldrovandi and Pereira, 1995). An optical
picture, with refractive indices and defects taking the place of potentials,
could be an alternative source of ideas.

Geometrization of the SU(2) theory was proposed by Lunev (1992), and
by Freedman et al. (1993; see also Haagensen, 1993, and Johnson, 1992) in
a tentative to arrive at a description of gauge fields in terms of invariants.
In particular, it was part of a program (Freedman et al., 1993) to solve a
great problem in the quantization of the Hamiltonian scheme—the implemen-
tation of Gauss’ law. In that pursuit some assumptions were made which
were not necessary to the simpler aim of establishing a geometrized version
of the theory. We present in the following a minimal approach, using only
the hypotheses strictly necessary to that particular end. It turns out that, in
the generic case, the metric sector is highly arbitrary and acts as a “host”
space, on which the “guest” gauge potential is represented by the contorsion
tensor. For some field configurations, however, it is possible to choose a
metric which alone contains all the information.

We begin by recalling the main aspects of the Hamiltonian approach to
Yang–Mills theory, in which time and Euclidean 3-space E 3 are clearly
separated. We show then how to transcribe the field equations into those of
a geometry on R3. Complete geometrization would lead immediately to gauge
theories on curved spaces. We proceed consequently in two steps. In the first,
only the indices related to the Lie algebra are “geometrized,” while ambient
space remains the flat space E 3. The main geometrical ideas are already
present, but we remain able to discuss questions turning up in flat space.
Some of them are seen under a new angle. For example, the Wu–Yang
ambiguity is related to the multiplicity of torsion tensors with a fixed curva-
ture. In the second step, also the ambient R3 is endowed with a new, rather
arbitrary metric. The Yang–Mills equations appear then written on curved
spaces. If such spaces are torsionless homogeneous symmetric spaces, their
very Christoffel connections are solutions. In such cases, the full geometriza-
tion exhibits field configurations which are completely equivalent to simple
optical systems. The group really considered is SU(2), for which the geometry
unfolds itself in a quite natural way. In our notation, Greek indices run from
0 to 3 and Latin indices from 1 to 3.



Yang–Mills and Optics 1087

2. HAMILTONIAN FORMALISM

In the Hamiltonian approach (Faddeev and Slavnov, 1978; Itzykson and
Zuber, 1980; Ramond, 1981) to the Yang–Mills equations, the canonical
coordinates are the vector potential components Aa

k and, once the Lagrangian
+ 5 21–4 Fa

mnF a
mn

is given, the conjugate momenta Pa
k

are the electric fields:

&ai
5

d+
d0 Aa

i
5 F ai0 5 E ai 5 iAa0 2 0Aai 1 f a

bc AbiAc0 (1)

The action can then be rewritten in the form

S 5 2 # d 4x trF0A ? E 1
1
2

(E 2 1 B2) 2 Aa
0Ga(x)G (2)

where

Ga(x) 5 Dk E ak 5 kE ak 1 f a
bc Ab

kE ck (3)

(we have profited to define the derivative Dk). A constraint, a redefinition
of terms, and two dynamic equations come out. The first two are as follows:

(i) The Gauss law, which states the vanishing of (3):

Ga(x) 5 kE ak 1 f a
bc Ab

kE ck 5 0 (4)

[where we see that A0 is, in action (2), a Lagrange multiplier enforcing
Gauss’ law].

(ii) The expression of the magnetic field in terms of Aa
k,

Bai 5 1–2 eijkF a
jk 5 eijk(j Aa

k 1 1–2 f a
bc Ab

jAc
k) (5)

The dynamic equations are Hamilton’s equations:
(iii) The time variation of the vector potential,

1
c



t
Aa

i 5 2E a
i 2 i Aa0 1 f a

bc Ab0Ac
i (6)

(iv) Ampère’s law, here in the role of the force law:

1
c



t
E ai 5 (¹ 3 B)ai 1 ei

jk f a
bc AbjBck 1 f a

bc Ab0E ci (7)

Consider now the gauge Aa
0 5 0. The Hamiltonian is

H 5
1
2 # d 3x tr[(E 2 1 B2)] (8)

A static Aa
i leads to E a

i 5 0. Gauss’ law is automatically satisfied and
Ampère’s law reduces to
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(¹ 3 B)ai 1 ei
jk f a

bc AbjBck 5 0 (9)

Notice that (5) fixes B once A is given, but not vice versa. This is the
Wu–Yang ambiguity (Wu and Yang, 1975): many inequivalent gauge fields
Aa

i can correspond to the same magnetic field Ba
i. A consequence is that the

Ba
i cannot be used as coordinates.

3. STEPPING INTO GEOMETRY

Let us stress beforehand that many different metrics can be defined on
the same space (for us, “space” will mean only a differentiable manifold).
The best examples of such a metric multiplicity are provided precisely by
optical systems (Luneburg, 1966), whose treatment is greatly eased by the
simultaneous use of the Euclidean metric dij of E 3 and of the dielectric tensor
eij. Isotropic media have eij 5 n2dij, with n the refractive index and correspond
to conformally flat 3-spaces. Notice that by E 3 we understand the usual
Euclidean metric space, the space R3 of real ordered triples endowed with
its unique differentiable structure and with the additional proviso that length
measurements are performed supposing that ds2 5 dij dxi dxj 5 dx2 1 dy2

1 dz2. An optical system will be the same differentiable manifold R3, but with
optical lengths instead, measured with the dielectric metric dl2 5 eij dxi dx j.
Another example is given by the group SU(2), whose manifold is the 3-
sphere S3. It has the “natural” spherical metric which comes up when S3 is
seen as an imbedded submanifold of the Euclidean space E 4, but it has also
the Killing–Cartan metric gab 5 dab, which is more important from the
algebraic point of view.

Now, looking back at what comes out in the Hamiltonian formalism:
The only equations remaining in the static case are (5) and (9). They can be
easily rewritten in terms of a spatial geometry in the following way. First,
we notice that both the spaces involved are 3-dimensional, on which vectors
are equivalent to antisymmetric 2-tensors. Indices can be trivially “dualized.”
We can redefine the gauge potential as the connection

va
ck 5 ea

bc Ab
k (10)

with curvature

Ra
bij 5 ea

cb F c
ij 5 eijkea

cb Bck (11)

in terms of which (5) becomes

Ra
bij 5 iva

bj 2 jva
bi 1 va

civc
bj 2 va

cjvc
bi (12)

We find immediately that, for any object of index type W a,
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[Di , Dj]W a 5 Ra
bijW b (13)

Second, we notice that the tangent space to the sphere SU(2), with the
metric gab, is isomorphic to E 3 and, consequently, to the space tangent to
the ambient space on which the differential equations are written. There are
actually infinite such isomorphisms, each one realized by a dreibein field
ha

i (we shall be using the letters a, b, c, . . . as isotopic spin indices and i,
j, r, s, . . . as ambient space indices). A dreibein field, together with its inverse
hj

b, can be used to change tensor indices as in

Rr
sij 5 hr

ahb
sRa

bij (14)

Connections, however, are not truly tensorial. Only the last (in our notation),
derivative index is a covector index. The other are not, and are translated
according to

Gi
jk 5 hi

ava
bkhb

j 1 hi
ckhc

j (15)

This comes from the requirement that the covariant derivative remain covari-
ant under change of basis. The connection va

bk would represent, in the absence
of torsion, the Ricci rotation coefficients (Chandrasekhar 1992) or, if we
borrow from the usual treatment of the Dirac equation on curved spaces, the
spin connection. With the above transformations, equations (5) and (9) become

Rr
sij 5 iGr

sj 2 jGr
si 1 Gr

kiGk
sj 2 Gr

kjGk
si (16)

and

jRr
si

j 1 Gr
kjRk

si
j 2 Gk

sjRr
ki j 5 0 (17)

where now all the indices refer to the ambient space. Notice that the dreibeine
are quite arbitrary. Equation (16) simply defines Rr

sij as the curvature of the
connection Gr

si, but the nine equations (17), stating Ampère’s law, keep their
dynamical role.

Another characteristic of the connection, its torsion, will be given by

T a
ij 5 iha

j 2 jha
i 1 va

cihc
j 2 va

cjhc
i (18)

or, after transmuting the indices,

T k
ij 5 2 Gk

[ij] (19)

We are introducing the notation [ij ] for antisymmetrized indices without any
numerical factors, and we shall use (ij ) for symmetrization. This will lead,
for example, to the identity

Gk
ij 5 1–2 (Gk

(ij) 1 Gk
[ij]) (20)

Some formal expressions are of interest to ease manipulations: first,
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Gk
ij 5 ha

kDjha
i (21)

and its consequence

Tk
ij 5 ha

kD[iha
j ] (22)

Equation (13) implies

Rr
sij 5 ha

r[Di , Dj]ha
s (23)

Finally, the Bianchi identity for torsion,

D[iT a
jk] 5 Ra

[ijk] (24)

The dreibein field will define a metric on R3 by

gij 5 gabha
ihb

j (25)

This metric is automatically preserved by Gk
ij. Indeed, the metric compatibility

condition (which means that the metric is parallel-transported by G)

kgij 5 Gijk 1 Gjik 5 G(ij)k (26)

is a simple consequence of (15).
Thus, in the transcription of Yang–Mills fields into a spatial geometry

induced by a dreiben field, the gauge potential is transmuted into a connection
which automatically preserves the metric defined by the dreibeine. Given a
dreibein field and the original A, the connection G is unique. This is due to
the Ricci lemma (Greub, 1972), which reads: Given a metric g and any tensor
of type Tk

ij, there is one and only one connection which preserves g and has
torsion equal to T k

ij.
Both curvature and torsion are properties of a connection (Kobayashi

and Nomizu 1963). There are in principle an infinity of connections which
preserve a given metric gij. Of all these connections only one, the Levi-Civita
connection G̊, has vanishing torsion (a weak version of the Ricci lemma).
The others differ from that privileged one precisely by their torsions. The
components of the Levi-Civita connection are the well-known Christoffel
symbols

G̊k
ij 5 1–2 gkr [i gjr 1 jgir 2 rgij] (27)

The strictly Riemannian curvature R̊ will be

R̊r
sij 5 iG̊r

sj 2 jG̊r
si 1 G̊r

kiG̊k
sj 2 G̊r

kjG̊k
si (28)

A connection exhibits torsion in the generic case. Now, given a general
connection Gk

ij preserving a metric gij, it can always be written in the form
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Gk
ij 5 G̊k

ij 2 K k
ij (29)

where K k
ij is its contorsion tensor. Any two connections differ by some

tensor, but here metric compatibility gives an extra constraint: contorsion is
fixed by the torsion tensor,

Kk
ij 5 1–2 [T k

ij 1 Tij
k 1 Tji

k] (30)

This comes from the comparison of two expressions for G̊: one obtained
by substituting (26) in (27) three times; the other by using (20) in (29). As
both T and K are tensors, this relationship holds in any basis. Notice that the
decompositions (20) and (29) are not the same. The two last terms in (30)
show a symmetric contribution of contorsion to G: K k

(ij) 5 T(ij)
k. In

consequence,

Gk
(ij) 5 G̊k

ij 2 T(ij)
k (31)

and

Gk
[ij] 5 2K k

[ij] 5 2 T k
ij (32)

The property

K(ki)j 5 0 (33)

follows from the fact that G̊ satisfies (26) independently.
The presence of torsion changes curvature. Indeed, the total curvature

(16) is

Rr
sij 5 R̊r

sij 2 M r
sij (34)

where

Mr
sij 5 i Kr

sj 2 jK r
si 1 G̊r

niK n
sj 1 K r

niG̊n
sj 2 G̊r

njK n
si 2 K r

njG̊n
si

2 K r
niK n

sj 1 K r
njK n

si (35)

We have thus obtained a geometrized version of the Yang–Mills system
in Euclidean space. The original SU(2) connection A has been transformed
into a linear connection on E 3, which will be “felt” by SU(2) nonsinglet
particles. Notice that, once a particular dreibein field is used, gij, G̊, and
R̊r

sij are fixed. The metric being arbitrary, the trivial choice would be a flat
host space: G̊ 5 0, R̊ 5 0. In that case, the equations reduce to

M r
sij 5 iK r

sj 2 j K r
si 2 K r

kiK k
sj 2 K r

kjK k
si

j M r
si

j 2 K r
kj M k

si
j 1 K k

sj M r
ki

j 5 0

These are just the equations (5) and (9) we started from, with the gauge
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potential transmuted into a contorsion by trivial dreibeine. Only the indices
related to the gauge Lie algebra have been changed into 3-space indices up
to now. And, as we treat the new indices (r, s, . . .) on an equal footing with
the original, holonomic ambient 3-space indices (i, j, . . .), what we are
actually doing is to choose a new basis for the algebra at each point of the
ambient space (in the language of the sixties, we are geometrizing the “internal
space”). This is better understood if we consider the complete expressions
of the algebra-valued differential forms involved. In (14), for example, what
we have is

R 5 1–2 Jc
bRc

bij dxi ∧ dx j 5 1–2 Jc
bhc

rhs
b Rr

sij dxi ∧ dx j

5 1–2 Jr
s(x)Rr

sij dxi ∧ dx j

We remain, for the time being, on the original flat space. We shall later
discuss the meaning of “geometrizing” the ambient space indices as well.

A few words on the Wu–Yang ambiguity. Two distinct gauge potentials
which have the same curvature are called “copies.” It should be said, to begin
with, that there are no copies in the relationship between G̊ and R̊. There
exists always around each point p a system of coordinates in which G̊ 5 0
at p, so that the usual expression R 5 dG̊ 1 G̊G̊ reduces to R̊ 5 dG̊, which
can be integrated to give locally G̊ in terms of R̊. This is analogous to
the equivalence principle which protects standard general relativity from
ambiguity, but holds only for symmetric, torsionless connections. On the
other hand, general linear connections exhibit copies in a natural way, as
they can, in principle, have the same curvature and different torsions. For
example, each solution K r

si (if any) of M r
sij 5 0 in (35) will lead to a copy

of the Levi-Civita connection. Instead of solving this equation, however, it
is simpler to take the difference between the two Bianchi identities, which
leads to an algebraic condition for the nonexistence of copies (Roskies, 1977;
Calvo, 1977). Though powerful general results have been found on the
problem (Mostow, 1980; Doria, 1981), there seems to be no simple, system-
atic, calculating view of the problem.

Suppose now we start with two distinct potentials A and A8 and transcribe
them into 3-space geometries using the same dreibein field. As g and G̊ will
be the same, their difference will be in their contorsions. This will lead to
different curvatures and torsions. If, however, A and A8 have the same curva-
ture, only torsion will remain to distinguish them. Thus, copies are “classified”
by torsions. This is trivial for linear connections, but the good thing about
the geometrization given above is exactly that: we can transfer to gauge
potentials, which are connections related to internal groups, some of the
properties of the linear, external connections.
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Notice also that discussions on the ambiguity are not, in general, con-
cerned with solutions and mostly ignore the dynamic classical equations.
Nonsolutions are very important because they appear as off-shell contributions
in the quantum case. The geometric formulation has been used to produce
examples of continuous sets of copies (Freedman and Khuri, 1994).

We study now cases in which it is possible to choose the metric so as
to completely absorb the gauge field.

4. ISOTROPIC OPTICS

Each choice of dreibeine will provide a different transcription into a 3-
space geometry. A natural question is whether it is possible to choose them
so as to absorb the gauge field entirely in the metric sector alone, dispensing
with the torsion field. Is it possible to transmute the gauge field into pure
optics? This would mean finding a dreibein field inducing a metric whose
Levi-Civita connection G̊ coincides with the transcript G of Aa

j.
Consider dreibeine of the form

ha
i 5 da

if (r) (36)

where f (r) is any function depending only on the distance r to some fixed
origin. The metric they define,

gij 5 dij[ f (r)]2 (37)

has the Levi-Civita connection

G̊k
ij 5 (dk

jxi 1 dk
ixj 2 dij xk)

1
rf

f
r

(38)

with curvature

R̊t
sij 5

1
f

f
r 12

r
1

1
f

f
r2 (dt

jdsi 2 dt
idsj)

1
1

r 2f F2f
r 2 2

1
r

f
r

2
2
f 1f

r2
2G

3 (dt
j xi xs 2 dsj xtxi 2 dt

i xj xs 1 dsi xtxj) (39)

Looking for solutions of the Yang–Mills equations, we take (38) and
(39) into (17) and find

3f
r 3 1

1
rf 1f

r2
2

2
5
f

f
r

2f
r 2 1

5
f 2 1f

r2
3

5 0 (40)

Using equations (15) and (10) in (38), we find the potential
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Ad
j 5 2

1
rf

f
r

ed
jk xk (41)

From (39), (14) and (11) we have the magnetic field

Bd
j 5 dd

jF2
rf

f
r

1
4
f 2 1f

r2
2

2
1
f

2f
r 2G

1
1

r 2f F2f
r 2 2

1
r

f
r

2
2
f 1f

r2
2Gxj xd (42)

Any solution of (40) will lead to a solution of (9) given by (41) and (42).
Let us discuss a few particular cases. Consider f (r) 5 1/r q, defined in

all points of space except r 5 0. The result of introducing it into (40) is an
equation for q,

q(2 2 q)(1 2 q) 5 0 (43)

which three obvious solutions. Cases q 5 0 and q 5 2 lead to trivial solutions:
both the potential and the curvature are zero in the first case, and the second
corresponds to a nonvanishing potential with zero curvature. The only nontriv-
ial solution is q 5 1, f (r) 5 1/r, the well-known Wu–Yang monopole (Wu
and Yang 1975)

Aa
j 5 ea

jk
xk

r 2 (44)

Ba
j 5 2

xaxj

r 4 (45)

Expressions of the type exp(6r q), exp[1/(1 2 qr)], exp[1/(1 2 r q)], and
exp(6qr 2) are only real solutions for q 5 0. Expressions of the type
[r/(1 2 qr)] and [r/(1 2 qr 2)] have only complex solutions for q. The
monopole is the only nontrivial solution found. No torsion is necessary in
this case. There is a metamorphosis of the gauge field into an isotropic
optics with refractive index n 5 1/r. It has been possible to choose a “host”
Riemannian background which entirely incorporates the gauge field. In that
case, there can exist no copies (the copy exhibited by Wu and Yang appears
in the presence of a source current).

In the example above we have taken a solution of the classical field
equation. Solutions or not, general field configurations of the form

Aa
j 5 2ea

jk
k ln n(x) (46)

are taken by the dreibeine ha
i 5 da

i n into connections which coincide with
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the Christoffel symbols of the corresponding metric gij 5 dijn2. There is
something curious about such cases: a system of coordinates exists in which
a symmetric connection vanishes. There is consequently a kind of equivalence
principle for this type of gauge field: by a judicious choice of dreibeine, and
then of coordinates, the potential (though not the field strength) can be made
to vanish.

5. PROBING INTO INTERNAL SPACE

We can use some general characteristics to investigate the “internal
geometry” obtained. Geodesics, for example, have a strong mathematical
appeal, and are much used in gravitation to describe general qualitative
properties of spaces. It is natural to ask whether they have some role here.
In the pure-optics case, as the light-ray equation, the geodesic equation does
provide an intuitive picture of the system.

From the strictly metric-Riemannian point of view, the geodesic equation
for the general case,

dvi

ds
1 G̊i

jkv jv k 5 Tjk
iv jv k (47)

can be seen as a kind of force law. The right-hand side would vanish for
shortest-length curves. As it does not, shortest-length curves are not self-
parallel. Notice that the affine parameter s has nothing to do with time, and
v is only a unit vector tangent to the curve. No physical particle is expected
to follow such a path.

On the other hand, parallel transport is taken into parallel transport by
the geometrizing transcription. A test particle in a gauge field is described
by (i) its spacetime coordinates and (ii) an “internal” vector I 5 {Ia} giving
its state in isotopic space. The corresponding dynamic equations (Wong,
1970; Drechsler and Rosenblum, 1981) are (i) the generalized Lorentz force
law, which for a unit mass reads

d 2xm

dt2 5 IaF amn
dxn

dt
(48)

and (ii) the so-called charge-precession equation,

dI
dt

1 Am 3 I
dxm

dt
5 0 (49)

The latter says that internal motion is a parallel-transport and a precession,
as I 2 is conserved. Its transcription,
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dI i

ds
1 Gi

jk I jv k 5
DI i

Ds
5 0

says that the transcript of I precesses parallel-transported by G along the
transcripted curve. If we take for I a current I 5 kv, it gives just the geodesic
equation. As to the Lorentz law, it takes the form

dvi

ds
2

1
2

I s
rRr

s
ijv j 5 0 (50)

This expression, with a velocity–curvature coupling, is more akin to the Jacobi
than to the geodesic equation. It implies the conservation of v2. Combining the
geodesic equation with the charge-precession equation, we find

d(Ii vi)
ds

5 0

Thus, I keeps constant its component along a geodesic.

6. FULL GEOMETRIZATION

In all we have done previously, the original, ambient space indices have
been preserved. Only algebra-related indices have been “geometrized.” This
has the advantage of simplicity, as all the expressions are written in the initial
holonomic basis of ambient space. That space remains what it was, the
Euclidean 3-dimensional flat space, and solutions eventually found will be
solutions in flat space. We can now proceed to a complete transmutation into
curved space, including the ambient space. We identify the two original
Euclidean flat spaces and use the dreibeine to pass entirely into the new
space. This will lead to more involved expressions, as everything will appear
written in the anholonomic basis defined by the dreibeine. It will have,
however, a double merit: we shall be able to speak really of optics, and new
solutions will turn up. Indices of both spaces, internal and ambient, become
of the same kind and can be mixed, as they are in general relativity. A typical
example of such mixing is the so-called cyclic identity for the Riemann
tensor, which comes from (24) when T a 5 0.

To work in an anholonomic basis is, on the other hand, a troublesome
task. Thus, after performing the complete transposition, it will better to choose
a coordinate basis again. Coordinates of a 3-space are functions with values
in E 3. It is particularly interesting to choose the original ambient space
coordinates as coordinates of the new space because, except for the terms
involving derivatives, all the above expressions remain formally the same.
Thus, (17) becomes
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1

!.g.
j [!.g. Rr

si
j] 1 Gr

kj Rk
si

j 2 Gk
sj Rr

si
j 5 0 (51)

Notice that this equation is the transcription of the static Ampère equation
(9), a particular case of the Yang–Mills equations in 4-dimensional spacetime.
Despite its aspect, there is a priori no reason for it to have any special
significance by itself. It so happens, however, that (51) is precisely the
sourceless Yang–Mills equation on the 3-dimensional curved space with
metric g. This equation is defined (Nowakowski and Trautman, 1978) on
any space as the natural generalization of the flat case: the covariant coderiva-
tive of the curvature equals zero (Aldrovandi and Pereira, 1995):

∗21d ∗ R 1 ∗21[G, ∗R] 5 0 (52)

where ∗ represents the Hodge star operator. Some attention must be paid to
the signature of the “host” metric, but in any sourceless case the equation
has the component form (51).

Here comes its main interest: it is known (Nowakowski and Trautman,
1978; Harnad et al., 1980) that the sourceless Yang–Mills equation on a
symmetric homogeneous space is solved by the corresponding canonical
connection. In consequence, any 3-dimensional homogeneous symmetric
space will provide a solution for (51). These connections are torsionless, so
that we come back to pure optics. Furthermore, they have constant scalar
curvature. Purely Riemannian spaces of constant curvature are not so many:
they are those hosting the highest possible number of Killing vectors. Given
the metric signature and the value of the scalar curvature R, there is only
one such “maximally symmetric” space (Weinberg, 1972), provided torsion
is absent. A negative constant total scalar curvature would establish the space
as a hyperbolic space. Thus, once a complete transmutation is performed,
each symmetric homogeneous space will provide an optics which solves the
Yang–Mills equation. The simplest 3-dimensional cases are the sphere S3

and the hyperbolic spaces. These would be the cases of static Yang–Mills
equation in Friedmann (respectively closed and open) model universes.

Consider, to start with, the hypersphere S3 in E 4, given in Cartesian
coordinates {jm} by (4

m51 (jm)2 5 (j4)2 1 (j1)2 1 (j2)2 1 (j3)2 5 1. We can
project it stereographically from the point j4 5 11 (its “north pole”) into
the hyperplane E 3 tangent at the point j4 5 21 (the “south pole”). This will
provide every point of the hypersphere (except the north pole) with coordi-
nates xk 5 2jk/(1 2 j4) on R3. It is a direct adaptation of the Riemannian
metric of S3 on the Euclidean space, with the north pole corresponding to
all the points at infinity. Introducing r 2 5 (3

i51(xi)2 and calculating the line
element ds2 5 (m(jm)2 in these stereographic coordinates, we obtain the
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spherical metric ds2 5 gij dxi dx j, where gij 5 n2(x) dij, with n 5 1–2 (1 2 j4)
5 1/(1 1 r 2). This case is well known in geometrical optics, where, with n the
refraction index, it leads to the perfectly focusing Maxwell fisheye (Luneburg,
1966). It does not lead to any bounding in space, as the sphere is taken onto
the whole of R3. It is a conformally flat space, as the new metric is at each
point proportional to the Euclidean metric.

Take now a hyperbolic space in E 4, given by (j4)2 2 (j1)2 2 (j2)2 2
(j3)2 5 1. It consists of two branches, each one a Lobachevski space. The
points j4 5 11 and j4 5 21 are now the lowest point of the upper branch
and the highest point of the lower branch. The stereographic projection leads
now to a metric gij 5 n2(x)dij with the refraction index n 5 1/(1 2 r 2). In
other words, given a hyperbolic metric on R3, it is always possible to find
a coordinate system {xi} in terms of which the metric is gij 5 n2(x)dij, with
n as above and r 2 5 (3

i51(xi)2. Higher dimensional analogues are the anti-de
Sitter spaces, which may exhibit properties analogous to perfect focusing
(Hawking and Ellis, 1973).

There are two kinds of hyperbolic space, the one-sheeted and the two-
sheeted. Now, it is a well-known fact that in the two-sheeted case the above
stereographic coordinates divide R3 into two parts, one for each branch of
the hyperbolic space (Aldrovandi and Pereira, 1995). One of them is a ball,
a Poincaré space, the interior (r , 4) of a sphere S2 (where r 5 4), the other
(r . 4) its complement in R3. The geodesics are easily computed, and better
suited to get some intuition about what happens, showing an “optics” with
some great differences with respect to Maxwell’s fisheye. This shows a
“confining” behavior, which is a global effect of the hyperbolic geometry.
Locally, one could be misled by intuition, as neighboring geodesics tend to
approach each other in the spherical case, thereby simulating an attraction,
and to separate from each other in the hyperbolic case (Arnold, 1978). The
bounding sphere S2 itself is a singular region, corresponding to the infinite
regions of both branches. It plays the role of a “natural” bag. Of course,
there is no reason to believe that test particles will follow geodesics, but
actually all continuous paths starting inside the region are trapped within it.
There is another point: the metric gij becomes infinite on the bounding sphere,
so does the magnetic field B, and, consequently, the energy density in (8).
Space is in this way divided into two regions separated by a barrier on
which the energy density diverges. This “confinement” remains, of course,
of academic interest, because it only occurs when the ambient space is
hyperbolic.

Summing up: A Yang–Mills field can, under certain conditions, be
described as an optical medium on 3-space. This fact leads to an alternative
to the usual potential picture as a source of ideas and physical intuition.
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